
4.1 Programming and Usability (Ken 3-4 pages)

4.1.1 Programming Models

State of the Art:
Although many HPC workflows are hand constructed through shell scripts, batch 
scheduling, and human intervention, there exist programmable tools such as Swift 
[Wilde2011], Tigres [Ramakrishnan2014], and many others [Altintas2004, 
Barga2008, Bui2010, Churches2006, Deelman2005, Goecks2010, Oinn2006] to 
better manage complicated workflows. The Open Provenance Model (OPM) 
[Moreau2011] is an open standard specification of a provenance data model with 
multiple existing compliant implementations [Cuevas-Vicenttín2012, Garijo2012, 
Lim2010]. Programming models for cloud, web service, and other big data 
applications are abundant. The programming model for MapReduce [Dean2004] is 
probably the most well known, but many others exist [Fox2014, Jha2014, Qiu2014]. 
Many of these models may be leveraged for use in high performance computing.
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As leadership class machines and the workflows applied to them increase in 
complexity, the horizon between workflow and programming model becomes 
blurred. The workflow system’s representation of a mix of coarse data- and task-
parallelism mirrors the finer-grained task-parallel computations that are predicted for 
increasing parallelism on extreme-scale systems beyond the common data-
parallelism in applications. It is unclear where the line between responsibilities of 
workflow and programming model should lie or indeed if there should be a 
separation at all. A combined hierarchical representation of tasks characterizing the 
spectrum of parallelism from coarse-grained jobs to fine-grained processing threads 
may be most effective.

In addition to better understanding the relationship between workflows and 
programming models, several other challenges exist.

 Mapping: The workflow exists in its own abstract model. This workflow 
abstraction must be mapped to the physical compute, analysis, and storage 
resources while taking into account an accurate model of their relative costs. 
These decisions may define how workflows are composed. [I admit that I’m 
not entirely sure what the notes meant when it says “compose workflows.” 
Perhaps we can word this better.]

 Provenance: The capture of provenance is critical for future analysis and 
reproducibility even for teams that do not otherwise rely on workflow systems. 
It is important to capture all relevant information including information only 
available after workflow execution (such as user information regarding quality 
of solution).

 Pragmatics: Just as science teams exhibit different workflow patterns, their 
modes of interaction with systems, the data they use and generate, and their 
rate of adoption of workflow related tools will vary.

R&D Needed:
As both workflows and programming models address high concurrency, dynamic 
application execution, dynamic resource availability, architectural diversity and 
heterogeneity, and new forms of in-system storage in extreme-scale architectures, 
research must manage the gaps in increased complexity.

 Horizon and Coordination: As the resource allocation responsibilities of 
workflows and programming models overlap, integration and coordination 
becomes fruitful and perhaps necessary. Programming models and system 
introspection could reflect knowledge up to the workflow manager or even to 
the programmer.

 Mapping: Domain-specific workflow systems could be used to exploit 
proposed programming systems that assemble applications composed of 
different algorithms or implementations based on execution context. This 
would simplify the mapping of workflows to the diversity of resources as 
compared to a more general workflow system.

 Provenance: For workflows that are dynamically executed as a result of 
system resource allocation or steered by the user to change the computation, 
we need to capture run-time decisions that affect execution even if it is not 
possible to replicate the exact execution.



 Pragmatics: Workflow systems must provide productive interfaces, and 
workflow tools should be decomposed in such a way that science teams can 
iteratively adopt components into their existing work practices.

4.1.2 Design Patterns

State of the Art:
The basic mental model for a workflow is a directed acyclic graph (DAG) 
representing the tasks to perform and the dependencies between the tasks. 
Workflow management tools such as Swift [Wilde2011] and Tigres 
[Ramakrishnan2014] center their API around building DAGs and internally manage 
parallel execution and dependencies with them. Other tools like AVS [Upson1989], 
SCIRun [Parker1995], and VisTrails [Bavoil2005] allow users to build and view 
workflow DAGs visually with a graphical representation and user interface.

Many scientists build workflows by example, which is an informal building and use of 
design patterns; they will iteratively construct one workflow using a previous one as 
a template. This incremental use simplifies the process of building and running 
workflows. This iterative addition to workflows and their capabilities shortens the time 
to user payback and can also be integrated in software design to accelerate 
workflow tool development [Maheshwari2013].

Some recent tools use pattern-like structures as part of the creation and execution of 
workflows. For example, Tigres has a collection of templates that can be applied 
when building workflow structures [Balderrama2014]. VisTrails can collect the 
provenance of many previously built workflows to find common patterns that can 
automatically assist users in other endeavors [Silva2007].

Challenges:
Many workflows, particularly those from the same group, are similar. These can 
potentially be defined as patterns with data, error control, and reproducibility. They 
can be characterized by their resource access — network traffic, high throughput, 
etc — to take the best advantage of resources while being portable. Science teams 
exhibit a variety of different workflow patterns, particularly across communities. 
Understanding these patterns can aid in the design of workflows and workflow 
systems.

However, it is unclear that any single workflow management system would be 
effective for supporting this variety of patterns. There are different types of scientific 
workflow needs that can change depending on the domain or the mode of operation 
such as production versus real-time versus exploratory.

Although a DAG is the fundamental model used to describe workflows and their 
patterns, they cannot capture interdependencies among tasks, which results in 
cycles in the dependency graph. Such interdependencies are common in, for 
example, multiphysics codes where independent tasks rely on the models and 
iterative computation of one another to converge to the appropriate solution. Such 
cycles can sometimes be handled by conditionals or dynamic scripting in the 
workflow tool, but better descriptions of the workflow could be made.



R&D Needed:
It is important to understand and classify various workflow and workflow needs 
through user research. Identifying common patterns, akin to design patterns in 
software engineering [Gamma1995], for next-generation in-situ and distributed 
workflows is needed to address programmability and usability concerns.

Workflows need to correctly and more formally handle task dependency loops. Part 
of this requires workflows to understand and manage time and data that changes 
over time, which has been demonstrated in the similar VTK dataflow network 
[Biddiscombe2007].
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[Also using some references listed in Section 4.1.1.]

4.1.3 User Interface
State of the Art:
Most workflow management tools use a scripting language to define tasks and 
dependencies and to manage execution [Altintas2004, Barga2008, Bui2010, 
Churches2006, Deelman2005, Goecks2010, Oinn2006, Ramakrishnan2014, 
Wilde2011]. Within the scripting language is an API that scripts use to define and 
execute a workflow. There also exist examples of workflow building tools that use an 
interface that provides a graphical representation of the workflow that is directly 
manipulatable [Parker1995, Bavoil2005]. Such interfaces provide a tradeoff between 
simplicity and expressibility.

Challenges:
Today, workflows are modeled in many different ways including scripts and 
application/programming models. The boundaries and interactions between the 
representation of workflow constructs and application interaction such as loops and 
parameter convergence/divergence are not well understood.

There is a constant tension between generalizing and specializing the workflow user 
interface. A generalized interface provides a greater amount of expression that can 
address more domains and more anomalous cases whereas a specialized interface 
tends to be easier to use and could provide more opportunities to optimize the 
workflow process.

Human-in-the-loop occurs in many different types of workflows including exploratory, 
failure recovery in production pipelines. The real time status of the workflow needs to 
be accessible to users. Many simulations require human monitoring for erroneous 
conditions such as the entangling of a mesh. Real time status is also important for 
observational and experimental data. For example, a human may be required to 
determine if missing telescope data is a result of a cloudy night or failures in the 
hardware or software. Beamline experiments can benefit from real-time feedback to 
improve experimental decisions [I think this is the same as the experiment talked 
about by Richard Carlson (slide 5). I don’t know the reference but it would be good to 
put here.]. There is limited support to enable seamless integration of the human in 
today’s workflows and automatically track the provenance from such activities.

R&D Needed:
It is unclear what is the appropriate level of abstraction for workflows. This level of 
abstraction may not be uniform for all use cases. Different domains may require 
different abstractions. It could also be beneficial to have different levels of 
abstractions for early and advanced users. Given a level of abstraction, what hints 
can a user provide to better map the workflow to the available resources?

Providing the interface for human-in-the-loop workflows is critical, but there is as yet 
no known way to properly capture the provenance of human interaction. To preserve 
repeatability, we must find ways to capture when a human makes changes, what 
changes were made, and the reason the change was made.



4.1.4 Task Communication

State of the Art:
Many current and past workflows have used files to communicate data between 
programs. For such an interface to work, the programs must understand each 
other’s file format. Thus, many HPC file formats are “self describing” in that arrays 
are organized using names, attributes, and hierarchies [Lofstead2008, 
Prabhat2014]. Similar organization is present in array databases [Stonebraker2011] 
and NoSQL databases [Cattell2010]. This organization, however, has little meaning 
without an agreement on the semantics. Thus, conventions [Eaton2011] and 
schemas [Clarke2007, Shasharina2010, Tchoua2013] are often applied.

Other work has focused on providing a unified interface to data that can come from a 
variety of storage implementation. For example, ADIOS can support numerous I/O 
back ends and switch between them at run time [Lofstead2008]. Tools like Google 
Dremmel [Melnik2010] and Apache Drill provide a unified interface to multiple data 
backends.

Challenges:
Today’s workflows and workflow systems have limited support for considering data 
sources, storage needs and data models. As workflows integrate ever varying tasks 
it becomes more challenging to communicate data between software that uses 
different data models. Systems that attempt to provide a unified data model have 
often been unsuccessful. Many file and database systems provide successful 
mechanisms for declaring data format, but these mechanisms need to be expanded 
and applied to direct task-to-task communication within a workflow.

R&D Needed:
We need to develop appropriate infrastructure that allows for seamless integration of 
various data sources including streaming, data management across the memory-
storage hierarchy of next generation systems and data semantics/model in user 
workflows. More needs to be understood how data can be communicated among 
tasks that are developed independently and have different data models. Data can be 
thought of as stored, streamed in and coming from multiple sources. The mechanism 
for connecting these sources as well as the ability to identify, convert, and verify data 
models must be well established. This communication will need to take place over a 
variety of levels in a deep memory hierarchy.
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4.1.5 Portability

Many analysis codes are run sometimes as in situ processes, meaning that all tasks 
run within a local supercomputer’s resources, and are sometimes run as distributed 
area processes where tasks are coordinated across multiple independent systems, 
which might be physically distant from each other. We do not wish to implement 
these workflows twice. Therefore, their interface needs to be designed to work in 
either in situ or distributed area modes. For example, the same code may need to 
point to data in memory, read data from a file, output data to memory or a file, run in 
serial or parallel, compute a small-scale or large-scale job, process data in-core or 
out-of-core, and be built as a library or as an executable. All of this ought to be 
uniform so data and control can seamlessly flow between in situ environments and 
data analysis environments.

State of the Art:



There are no widely adopted general-purpose workflow tools available that work 
seamlessly across both in situ environments and distributed area environments. 
However, there are many examples of specific applications designed to work in both 
domains. CyberShake, a seismic hazard model from the Southern California 
Earthquake Center [Graves2011], combines components that use high-performance 
computing and high-throughput computing. The Advanced Photon Source 
coordinates high-performance computation with detector hardware and other 
processing systems [Khan2013]. Likewise, the National Synchrotron Light Source II 
has initial processing in situ with data collection with the results sent to distributed 
users. The HACC cosmology simulation can interface its high-performance 
computation with other analysis on other systems through the CosmoTools analysis 
framework [Habib2014]. KBase, the DOE systems biology knowledgebase, contains 
in situ modeling and reconstruction tools as well as offloading to cloud distributed 
area systems [Benedict2014].
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Challenges:
To address workflows both across in situ and distributed area boundaries and across 
applications, we need to find a common language for building workflow tools. This 
may be a job for the emerging field of “workflow science,” which itself is highly 
related to (and perhaps a subset of) data science.

We expect steering and human interaction to become more important in the future. 
Better tools are needed to express and enable dynamic control while not interfering 
with the run. Many problems require a human in the loop as the most complex 
decisions cannot be programmed. Furthermore, scientists innately like to know how 



their run is going and perhaps need to decide what to do in case of failures. It is not 
clear how this projects to in situ versus distributed area space.

In situ workflows often make different assumptions about the abilities of users than 
distributed area workflows: In situ workflows usually assume more computationally 
sophisticated users who are comfortable with programming and scripting whereas 
distributed area workflows usually assume less sophisticated users who may need a 
more user-friendly interface. There is not necessarily good technical justification for 
these assumptions though they may be related to the history of the domains that 
respectively use in situ workflows and distributed area workflows.

Time plays a significant and different role for in situ and distributed area connections. 
In situ is generally real-time in that data is transient and analysis must keep up with 
the simulation or throttle the speed of the job. In contrast distributed area generally 
has looser scheduling because the lifespan of the data is longer. There also may be 
a difference in how results of in situ and distributed area workflows are stored and 
used: Distributed area scientists often collect data for long-term sharing whereas in 
situ data is often shared within smaller groups that need the data for less 
time. However, there are also counterexamples, such as climate, material science, 
and cosmology, where in situ workflows produce data that is intended to be used by 
large communities over a long time.

Portability is difficult on complex, heterogeneous systems. Part of the solution falls to 
other areas of research (such as programming models), but workflows can also help. 
Workflows can help match tasks to the architecture best suited to run them; this is 
more common in distributed area workflows, but it is still an area of research for in 
situ. Containers, with workflows operating above the container level, are a possible 
solution for some distributed area and in situ workflow issues.

R&D Needed:
How can we build workflow systems and common application components that 
operate with good performance in both distributed areas and in situ?

What is the role of containers and other virtualization technologies in workflows? 
Virtualization can have a profound effect both for workflow components (tasks) and 
for the workflow systems themselves.

Security for in situ workflows often relies on the access controls of the system 
whereas distributed area workflows must be more cognizant of security since they 
run across different systems in different security domains. Often the security policies 
between in situ, distributed area, and the compute facilities are in conflict with each 
other. How can security be unified across all these elements to allow application 
workflows to best be developed, deployed, and executed?

Can workflows be leveraged to manage deep memory hierarchies? Given an 
appropriate decomposition of the problem, as workflows orchestrate tasks they can 
manage the movement of data up and down this memory hierarchy. For example, 
workflows could potentially manage movement of data between out-of-core and in-



core, between NVRAM and main memory, and between main RAM and high 
bandwidth RAM.

As high-performance computing and workflows become more complex, the 
interaction between human and system becomes more important. For large scale 
applications it is not feasible to continually monitor tasks and restart jobs when 
problems occur or steering is necessary. Rather, analysis tasks need a better 
communication path to analyst and interaction to modify or correct behavior must be 
possible. The human interaction can become even more complex as we mix in situ 
and distributed area coupling in the same workflow.

4.1.6 Ties to other Sections

Programming and usability crosscuts many workflow topics. Requirements for 
provenance (discussed at length in Section 4.3) can have a profound effect on the 
programmability of the system. Models and proxy applications (Section 4.4.1) are an 
important tool in the design of programming models and design patterns as they can 
help predict the behavior of more complicated systems. Data models and data 
management (Section 4.2.2) are a critical component of the task communication. 
Many aspects of the hardware (Section 3.2.1) for the basis for the appropriate 
abstractions in programming models and design patterns. Finally, well understood 
workflow science (Section 4.5) is required to build workflow systems that are both 
usable and effective.

Dropped on the floor
Can we prove the correctness of workflows?

Real-time workflows are producing data and need to
understand it immediately. Recovery should allow scaling to
catchup. Previous data is used for future analyses. Analogies
with financial markets.

Production workflows are not always real-time. Robust and
reliable – serves analyses needs of many people. Are on a
timeline of publications. Do require follow-up at the same
time? Processed multiple times -> improving algorithms.
Human in the loop is prevalent in the loops here.

Workflow interaction with system resources for optimization, auto-tuning and 
portability are relatively challenging.

Experimentation, modeling and simulation of scientific workflows are needed to 
identify the interaction of workflows with programming models and systems for 
optimization.

We need to investigate if workflow tools might provide an opportunity for optimization 
at exascale. For example, can workflow systems enable automated data triage or 
reduction?; Can system interaction lead to auto-tuning?
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